Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

First-principles study on segregation energy and embrittling potency of hydrogen in Ni$$Sigma$$5(012) tilt grain boundary

Yamaguchi, Masatake; Shiga, Motoyuki; Kaburaki, Hideo

Journal of the Physical Society of Japan, 73(2), p.441 - 449, 2004/02

 Times Cited Count:23 Percentile:71.32(Physics, Multidisciplinary)

The electronic structures of $$Sigma$$5(012) symmetrical tilt grain boundary (GB) and (012) free surface (FS) systems for nickel including hydrogen are calculated by the full-potential linearized augmented plane wave method with the generalized gradient approximation. The difference of the binding energies between the $$Sigma$$5(012)GB/FS site and the inner bulk site is obtained as the GB/FS segregation energy, and the difference between GB and FS segregation energies as the embrittling potency energy. The segregation position of hydrogen atom is determined by the force minimization. We find that hydrogen atom prefers $$Sigma$$5(012)GB to inner bulk energetically by about 0.3 eV/H, while it prefers (012)FS to the GB by about 0.3-0.4 eV/H. The open space at GB may be occupied by an additional interstitial Ni atom since it increases the GB energy by only about 10%. In this case, the GB segregation energy of hydrogen reduces, which makes the segregation difficult. The calculated zero-point energies of hydrogen at inner bulk, GB, and FS sites are within 0.12-0.16eV/H.

1 (Records 1-1 displayed on this page)
  • 1